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J .  Phys.: Condens. Matter 2 (1990) 785-795. Printed in the UK 

A continuous transition from twins to ‘quasi-crystals’ 
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t Institute of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, 
al. Mickiewicza 30.30-059 Cracow, Poland 
$ Physics Department, Ris0 National Laboratory, DK-4000 Roskilde, Denmark 

Received 20 September 1988, in final form 11 August 1989 

Abstract. In this paper we discuss different structures, built up using two types of Robinson 
triangle tiling the plane without defects and having diffraction patterns with symmetry 
forbidden by classical crystallography. A universal behaviour of the diffraction patterns of 
the different structures allows definition of a similarity parameter which distinguishes ‘quasi- 
crystals’ (i.e. structures for which the diffraction peak intensities scale as N 2 )  from all other 
typesofstructure. It isshown that the similarity parameterdependsonly on theconcentration 
of small Robinson triangles. The concentration dependence of the similarity parameter 
exhibits singular behaviour at the Penrose concentration, indicating that a continuous 
transition takes place from twinned structures to ‘quasi-crystals’. The critical exponent for 
this behaviour was determined to be 0.55 k 0.02. 

1. Introduction 

The experimental observation of systems showing diffraction patterns which exhibit 
symmetry forbidden by the concepts of classical crystallography (Shechtman et a1 1984) 
has been theoretically explained by many different models (Penrose 1974, Mackay 1982, 
Sadoc and Mossieri 1982, Duneau and Katz 1985, Kramer 1985, Pauling 1985, 1987, 
Bak 1986, Wolny and Lebech 1986, Fruchart and Dubois 1987, Janot et a1 1987, Jprnsson 
and Andersen 1988). Among these models there are two concepts: Penrose-like struc- 
tures (Penrose 1974, Mackay 1982) and crystal twinning (Pauling 1985,1987, Fruchart 
and Dubois 1987), which have been used to obtain diffraction patterns with fivefold 
symmetry. Recently the concept of random quasi-crystalline structures obtained by the 
growth method, i.e. by attaching tiles to an existing seed (Stephens and Goldman 1986, 
Minchau et a1 1987, Nori et a1 1988, Ronchetti et a1 1988, Wolny et a1 1988, Lebech et a1 
1988, Onada et a1 1988), or equilibriated by the Monte Carlo method (Widom eta1 1987, 
Strandburg et al 1989) or by molecular dynamics (Lancon and Billard 1988) has been 
extensively studied. Theoretical descriptions for such structures using transfer matrix 
calculations (Henley 1988, Widom et a1 1989) have also been presented. Calculations of 
the diffraction patterns using the analysis of the two-dimensional hypersurface projected 
from the five-dimensional hyperspace to the physical space can be also found (JariC 
1986, Elser 1985, 1986, Henley 1988). 

In this paper we compare different types of two-dimensional structure, which can 
explain the observed fivefold or tenfold symmetry of calculated diffraction patterns. We 
have studied several different structures which can be obtained by tiling the plane 
without defects using only two types of Robinson triangle (Robinson 1975, Godreche 
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Figure 1. Different typesofstructure: ( a )  Penrosestructure, concentrationofsmall Robinson 
triangles, cp = 0.382; ( b )  a twin structure (c = 0.5, five twins); (c) a random structure (c = 
0.37); (d )  a precipitated structure (c = 0.8). The fictitious atoms should be placed in the 
corners of the Robinson triangles (0). All possible connections between ‘atoms’ of lengths 
1 and t have been marked and one arbitrary choice of connected small triangles is hatched. 

and Orland 1986, Stern et a1 1986, Wolny et a1 1988, Lebech et a1 1988). As described 
by Wolny et a1 (1988). these structures can generally be divided into four types (figure 
1): Penrose-like structures, twins, random structures and precipitated Structures. All of 
them give tenfold diffraction patterns with well defined diffraction peaks. After aver- 
aging the peak intensities over the five equivalent directions and normalising to N 2 ,  
where N is the number of ‘atoms’ in the structure, we find that for finite structures the 
peak intensities approach unity for large values of scattering vectors. 

We limit the discussions to include only diffraction peaks for which the intensities 
when normalised to N 2  are greater than 0.1. We also use the term ‘quasi-crystal’ 
to describe structures having diffraction patterns exhibiting forbidden symmetry and 
having normalised peak intensities which are constant as a function of N .  In other words 
it is only the symmetry that distinguishes the diffraction patterns of normal crystals 
and ‘quasi-crystals’. It should be noted that this use of the term ‘quasi-crystals’ is 
unconventional because the term quasi-crystals is more conventionally used to describe 
all structures having well defined peaks in the diffraction patterns exhibiting forbidden 
symmetry, even those for which the normalised intensities are not necessarily constant 
with increasing number of atoms. 

Figure 2 shows the diffraction patterns for the four structures mentioned above, 
computed along the ky direction fork, = 0. From this figure it can be seen that the series 
of peaks are completely aperiodic on a linear scale ( k y ) .  However, all the diffraction 
peaks can be divided into groups of peaks such that each group becomes periodic on a 
logarithmic scale with the periodicity In 5 ,  where 5 is the golden mean value equal to 
(1 + d3) /2 ,  The origin of such groups of peaks has been shown analytically by JariC 
(1986). For each group of peaks the parallel and perpendicular components of the Q, 
vector in the five-dimensional hypercubic reciprocal space are given by: QL = tm@, 



Transition from twins to 'quasi-crystals' 787 

0.6 

+ 0.4 
? 

o.2 0 k 5 10 20 30 40 I 

kv 

J ii i t  I 

100 5 10 20 30 40 50 100 

kY 
Figure 2. Normalised diffraction patterns in the k ,  direction of reciprocal space for (a )  
Penrose tiling, ( b )  a twin structure, (c) a random structure and ( d )  a precipitated structure. 
O n  a logarithmic k,. scale all the peaks can be divided into series of peaks with a periodic 
arrangement of peaks. The period is equal to In t within each series. In ( a )  the peaks in the 
first three series of peaks are joined by the thin curves. 

Q; = (-z)-"'Ql and Qiz = (-2)"Q" for the mth peak in the group. Moreover, for 
all the structures discussed, a universal envelope function (or scaling function), appro- 
priately shifted on a logarithmic k, scale, describes the peak intensities for all the peaks 
in a particular series of peaks (figures 2(a) and 3). The shape of the envelope function 
can be computed as done by JariC (1986), provided that the details of the hypersurface 
used in the projection method, namely its coordinate along the [l, 1, 1. 1, 11 direction 
and its window function, are given. Computations using a Gaussian window function 
give a shape which is very close to our numerical results. The universal behaviour of the 
envelope function can be used to obtain parameters which may be regarded as similarity 
parameters. These parameters depend only on the type of structure and on the con- 
centration c of small Robinson triangles in the structure and they describe the similarity 
of a given finite structure to the Penrose structure. As examples, the Penrose structure 
corresponds to c = l/z2, while c = 0.5 corresponds to a structure with equal numbers of 
small and large triangles. 

2. Definition of the similarity parameters 

Similarly to classical crystallography, the maximum peak intensities when normalised 
to N 2  do not depend on N for the Penrose-like structures, which are 'quasi-crystals'. 
This is in contrast with the behaviour of other types of structure for which the normalised 
peak intensities decrease to zero when N goes to infinity (non-'quasi-crystals'). Fur- 
thermore, the intensities vary for different groups of peaks (Wolny et a1 1988) for the 
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Figure 3. Peak intensity against the order n of 
the diffraction peak and/or In k ,  for one series of 
peaks described by k ,  = 0, k ,  = k, ,r",  where k, ,  = 
2n/d and d = (2 + r )  sin(36"), which gives k,,  = 
2.955: curve A, Penrose tiling (c = cp = l / r2  = 
0.382); curve B, random structure (c = 0.37); 
curve C, twin structure (c = 0.5); curve D, pre- 
cipitated structure (c = 0.8); curve E, twin struc- 
ture (c = 1.0). A single envelope function 
appropriately shifted by A In k = An In r scales 
all peaks for the different structures. The same 
envelope function also scales peaks for other 
seriesofpeaksdescribed byadifferentvalueof k,,. 
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Figure 4. Scaling factor k l k ,  for circular segments 
of a structure of radius R :  curve A,  twin structure 
(c = 1.0. k,,  = 2.95); curve B,  precipitated struc- 
ture (c = 0.8, k ,  = 2.95); curve C, twin structure 
(c = 0.5, k,, = 2.95); curve D, random structure 
(c = 0.37, k,, = 2.95; k,, = 9.56 and k ,  = 10.69). 
This ratio was calculated as k l k ,  = rA", where A n  
is the shift between the envelope function for a 
certain series of peaks in a given structure and the 
same series of peaks of Penrose tiling (see figure 
3). 

non-Penrose structures. However, as mentioned previously, for a given type of finite 
structure with a particular concentration of small triangles the wavevector dependence 
(in a logarithmic scale) of the intensities of each group of peaks is the same as for the 
Penrose structure apart from a shift (A In k = An In t) along the horizontal axis (see 
figure 3 ) .  This characteristic property of the diffraction patterns leads to the main 
conclusion that for finite structures we may regard the Penrose tiling as the reference 
structure and relate all other structures discussed here to this particular structure. In 
other words, for all groups of peaks belonging to a given finite structure there is a 
universal scaling factor k/k, ,  which causes the envelope of the intensities to coincide with 
the envelope obtained for the Penrose structure, although the peaks do not necessarily 
coincide. The scaling factor is strictly related to the value of the shift of An (or In k )  by 
the following relation: 

k l k ,  = rA" 

where An is the shift of the envelope function defined in figure 3 .  It should be noted that 
the above conclusion is not valid for rather weak peaks, i.e. peaks having maximum 
intensities less than 0.1, but, as mentioned previously, such peaks are excluded in the 
present analysis. 

To study the spatial variation of the scaling factor we have computed k / k ,  for two 
types of structure segment, i.e. for circles of variable radius R (figure 4) and for rings of 
mean radius R and thickness A R  = 2 (figure 5). For large values of R ,  both values of 
scaling factors are linear in R ,  with a ratio between the slopes of approximately $. This 
ratio is easily explained: let us assume the linear dependence for the ring-shaped structure 
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Figure 5 .  Scaling factor k / k ,  for ring segments of 
structures of mean radius R and thickness A R  = 
2 (this ratio was calculated as described for figure 
4): line A ,  twin structure (c = 1.0, k,, = 2.95; line 
B. precipitatedstructure (c = 0.8, k,, 2.95); line 
C. twinstructure (c = 0 5. k,, = 2.95); line D ,  ran- 
dom structure (c = 0.37, k,, = 2.95. 9.56 and 
10.69). 

Figure 6. Scaling factor k / k ,  for circles of radius 
R centred at different points ( x ,  y) (0, (0,O); 0, 

x , (0, 10)) where ( x ,  y )  = (0,O) corresponds to 
the central points of the structuresshown in figure 
l:lineA,twin(c = l.O);lineC,twin(c = 0.5);line 
A', single crystal grain (c = 1.0); line C', single- 
crystal grain (c = 0.5); lines B, B' ,  precipitated 
structures (c = 0.8); line D, random structures 
(c = 0.37), independent of ( x ,  y). 

(-5,O); V, (-10.0); 0, (-15.0); V, (-20,O); 

in figure 5 to be k /k ,  = ARR + BR; then by simple integration we can find that the 
average value of k / k ,  for the circle is also linear with R :  

and the corresponding coefficients are given by 

in consistency with figures 4 and 5 .  
It turns out that, for a given type of structure defined by a particular set of matching 

rules (or concentration when the structure is random), its similarity to the Penrose 
structure can be described by the coefficients obtained from plots such as figures 4 or 5 .  
The parameter A in this linear dependence describes the deviation from the classical 
scaling of the intensity. For ordinary crystals and 'quasi-crystals' the maximum peak 
intensities when normalised to N 2  are constants as a function of N ,  which corresponds 
to A equal to zero. Whenever A differs from zero, it means that there are some twins or 
microtwins in the structure with overlapping peaks (Wolny et a1 1988). The parameter 
A describes the space dependence of Penrose-like order and it can be used to measure 
the deviation from a 'quasi-crystal' structure. The parameter B can be used to distinguish 
between 'quasi-crystals' with different degrees of Penrose-like order, as discussed later. 
In the analytical works on the equilibrium random tilings the fluctuation of the per- 
pendicular coordinates of the five-dimensional hypersurface is mostly used (Henley 
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Figure 7. Robinson triangles and the divisions that may be used in the inflation method. 

1988). It is in some way equivalent to our scaling parameter A ,  because it controls the 
intensities of the peaks in the diffraction pattern. For such a variable the dependence on 
R should have the form of a logarithmic function, provided that there is no uniform 
phason strain in the structure (Tang and JariC 1989). In our structures obtained by a 
growth model the logarithmic component is not visible. The possible explanations are 
that linear dependence is dictated by the uniform phason strain present in our samples 
and the A parameter is closely related to the strain value or that the structures differ 
from equilibrium random tilings. 

Figure 6 shows plots similar to those shown in figure 4 for different positions of the 
origin of the circle considered in the calculation. It is obvious that the random structure 
is the least sensitive to a change in the origin (figure 6 ( b ) ) .  Precipitated structures are 
heterogeneous and the local concentration of triangles changes considerably with change 
in the origin. This results in a scatter of the points in the curve describing the behaviour 
of the precipitated structures (figure 6 ( b ) ) .  In figure 6(a) we show the results obtained 
for two twin structures. In one case, the concentration of small triangles is 0.5, which 
corresponds to the structure shown in figure l (b) .  In the other case, the concentration 
is unity because the structure was generated using only small triangles. In figure 6(a) the 
lines A and C describe the behaviour for the origin of the circle in the centre of the five 
fold symmetry (see figure l(b)) for concentrations of 0.5 and 1, respectively. Lines 
marked A‘ and C’ describe the behaviour for the origin of the circle shifted far in the x 
direction from the centre of the fivefold symmetry into the interior of one of the grains. 
When symmetrised over the five directions, the fictitious ‘diffraction patterns’ of such a 
single grain also show groups of peaks similar to those found in the Penrose tiling. The 
non-linearity observed in figure 5(a) for the curves corresponding to shifted circles is 
connected with the influence of the inter grain boundaries (a change in the matching 
ruies). 

3. Disorder and the similarity parameters 

To find the influence of disorder on the similarity parameters, we calculated k / k p  for 
two different classes of random structures. To the first class belong all the structures 
which can be generated using the inflation method (Wolny et al 1988). As seen from 
figure 7, one can easily subdivide the triangles in several different ways, but for each 
choice of subdivision the concentrations are the same and finally go to cp = 1/r2. The 
subdivision shown in figure 7(a) leads to the Penrose tiling shown in figure l(a).  It is 
impossible to tile the plane using only the subdivision shown in figure 7(c); to avoid 
defects, one has to use it together with the other ways of subdividing. If the subdivision 
of figure 7(c) is preferred, one obtains the structure shown in figure 8(a).  If the triangles 
are subdivided by a random choice between the different ways shown in figure 7,  there 
are many random structures which tile the plane without defects, with concentration of 
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Figure 8. Different types of structure obtained by the inflation method: (a) the division 
shown in figure 7 ( c )  was preferred; ( b )  the different divisions shown in figure 7 were used at 
random. 

i 
Figure 9. Scaling factor k/k':, for ring segments of 
structures of mean radius R and thickness AR = 
2 for the first two series of peaks described by the 
relation k = k,t" (k:  is the apparent scattering 
vector for the first series of peaks (ko  = 2.955) of 
the Penrose tiling; if instead k ,  was used as it is in 
figure 5, the lines for the different series would 
coincidefork" = 2 . 9 5 ( 0 ,  V, O)andfork,, = 9.56 
(0, V, +): 0, 0, Penrose structure (figure l ( a ) ) ;  
(V, V, random Penrose structure (figure 8(b ) ) ;  
0, +, structure shown in figure 8(a)  obtained by 
using the preferred division of triangles shown in 
figure 7(c). 

small triangles approaching cp. One of these structures is shown in figure 8(b) .  The 
calculated diffraction patterns for all these structures look similar to that obtained for 
Penrose tiling and the similarity parameters A and B can be obtained from figure 9. In 
this figure we relate two series of peaks (for ko = 2.95 and ko = 9.56) to the first series 
(ko  = 2.95) of the Penrose tiling. It is evident from figure 9 that, for these series (and, of 
course, also for others) and for all structures obtained by the inflation method, the 
parameterA (slope) is equal to zero whereas the parameter B is different for the different 
structures. The fact that the intensities are independent of the sample dimensions R 
means that all these structures belong to the same type of structures, called 'quasi- 
crystals' in this paper. The value of B for one series of peaks (ko = 2.95) is the same as 
for the other series of peaks (ko = 9.56) and the different relative values of B describe 
different levels of disorder in these structures. It should be noted, however, that for the 
first peaks in each series (which correspond to high Q1 values) a weak dependence of 
peak intensities on the number ( N )  of 'atoms' can be seen although it does not influence 
the values of A significantly. 

The second class of random structures is represented by the random structure shown 
in figure 10(b). This structure was obtained by random mixing of the two different twins 
shown in figures l (b)  and 10(a). Each of them has c = 0.5 but they are generated using 
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Figure 10. (a) Twin structure (c = 0.5); ( b )  random twin structure (c = 0.5) obtained by 
random mixing of the local configurations used in the structures shown in figures l (b)  and 
lO(a). 
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Figure 11. Scaling factor k / k ,  for different struc- 
tures with the concentration c of small Robinson 5 
triangles equal to 0.5: 0, twin structure from 

0 figure l (b) ,  A = 0.441 0.007; V, twin structure 
fromfigure 10(a),A = 0.440 2 0.006; X ,  random 

6o twin structure from figure 10(b), A = 

i/8/ 10 8 , , ; E :  , ,I 
a 

lo *’ 30 
R 0.443 ? 0.004. 

different matching rules. From figure 11 it is quite evident that the randomisation does 
not influence the slope of the similarity parameter A.  From the two examples discussed 
above, the general conclusion can be reached that the similarity parameter A depends 
only on the concentration of small triangles. The random arrangement of triangles has 
no influence on this parameter. 

4. Concentration and the similarity parameter A 

We have investigated several structures built using different concentrations of small 
Robinson triangles and determined the concentration dependence of the similarity 
parameter A .  We mainly studied this dependence for twins, some of which are shown 
in figures l(b),  10(b) and 12, but also for the structures described by Wolny et a1 (1988), 
i.e. random structures (see also figure l(c)) and precipitated structures (figure l(d)). 
The dependence of the parameterA on the concentration is shown in figure 13. It shows 
a singular point for the concentration of small triangles equal to cp, i.e. the Penrose tiling 
concentration. All the structures for this particular concentration belong to crystals 
which we call the ‘quasi-crystals’, i.e. structures with diffraction patterns exhibiting 
forbidden symmetry, but with the same scaling of the peak intensities as in classical 
crystallography. For these structures the similarity parameter A equals zero. Structures 
having concentrations that differ from cp lie on the common curve (figure 13) irrespective 
of their type (perfect twins, random or precipitated structures). This means that all those 
structures belong to the same class of structures which may be called twins or microtwins. 
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Figure 12. Twin structures for different concentrations of small Robinson triangles: (a) five 
twins, five ‘atoms’ per unit cell, four small and six large Robinson triangles per unit cell, c = 
0.4; ( b )  five twins, 13 ‘atoms’ per unit cell, 10 small and 16 large Robinson triangles per unit 
cell, c = 0.3846; (c) 10 twins, three ‘atoms’ per unit cell, two small and four large Robinson 
triangles per unit cell, c 2 0.3333; ( d )  10 twins, eight ‘atoms’ per unit cell, six small and 10 
large Robinson triangles per unit cell, c = 0.375. The ‘atoms’ in one unit cell are indicated 
(W. 

A 

C 

Figure 13. Dependence of the similarity par- 
ameter A on the concentration c of small Robin- 
son triangles for different types of ring shape 
structure: 0,0, different twin structures; X ,  ran- 
dom structures with different concentrations of 
small Robinson triangles; 0, precipitated struc- 
ture (c = 0.8); U, Penrose structure; -, two 
curves given by the formula A = A” (Ac)., where 
Ac = c - cp, cp = l / t2 and the critical exponent 
is equal to (0.55 2 0.02). The deviation of the 
precipitated structure from the full curve can be 
explained by the concentration fluctuation 
observed for this structure. 

I C  - cp l / cp  
Figure 14. Log-log plot of the similarity par- 
ameter A against the reduced concentration of 
small triangles: 0, 0,  twins; 0, precipitatedstruc- 
ture; x , random structure. Typical critical behav- 
iour is observed with critical exponents equal to 
0.539 2 0.018 (for c < cp) and 0.558 * 0.007 (for 
c > cp) and the ratio between the pre-exponential 
factors equal to 1.6 (= t), 
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The random structures of Wolny er a1 (1988) are examples of microtwins; the existence 
of very small twins in the random structure can also be seen in figure l(c). For these 
microtwins the complex peaks observed at Penrose positions cannot be split into indi- 
vidual peaks by increasing N, a behaviour which is observed for the normal twins (Wolny 
et a1 1988). The singular behaviour of the similarity parameter A indicates a kind 
of continuous transition from twins (or microtwins) to ‘quasi-crystals’ at the critical 
concentration cp. From figure 14 a critical exponent describing the behaviour of the 
similarity parameter A is found to be 0.55 f 0.02. 

5.  Conclusions 

There are two types of structure which tile the plane without defects and for which the 
diffraction patterns can show symmetry elements forbidden by classical crystallography, 
such as fivefold or tenfold symmetry. To one of these types belong all structures for 
which the peak intensities are constant when normalised toN2,  as it is for normalcrystals. 
We call these structures ‘quasi-crystals’. The structures for which the peak intensities do 
not scale as N 2  belong to the second class of structures, and these structures may be 
called twins or microtwins. The microtwins differ from the twins by showing a different 
behaviour with complex peaks at Penrose positions. For twins these peaks can always 
be split into individual peaks by increasing N ;  this is never observed for microtwins 
(Wolny et a1 1988). Analytical results for equilibrium random tilings (Strandburg et a1 
1989, Widom et a1 1989) show that the intensities of the peaks should scale as N2-”’ 
where 7 = IQ’ I 2 / 2 n k  + IQ: I /2nk,. Here k and k,  denote the phason stiffness constants 
and Q’ and I Q: 1 the perpendicular components of Q in the five-dimensional hypercubic 
reciprocal lattice for a given peak. For our random structures obtained by the growth 
model the peak intensities do not scale with N according to that formula unless it is 
assumed that the 7-value changes with the size of the sample. 

For all finite structures which tile the plane without defects using only two types of 
decorating element, the diffraction patterns exhibit the same series of peaks as those 
observed for the corresponding Penrose tiling. Using Penrose tiling as a reference 
structure and the universal behaviour of a function describing the change in peak 
intensities against In k-the envelope function-one can easily find a linear relationship 
between the scaling factor k/kp and the dimension of a circular segment of the sample 
structure. From plots such as those presented in figure 4 or 5 for a given structure, the 
two parameters ( A  and B )  of the linear dependence of the scalingfactor can be obtained. 
The parameter A distinguishes ‘quasi-crystals’ ( A  = 0) from twins or microtwins ( A  # 
0 ) .  This parameter is the same for the ordered and disordered (random) structures 
having the same concentration of small triangles. 

For all investigated structures the parameter A shows a common dependence on the 
concentration (figure 13) of small Robinson triangles, having a singular point at c = cp. 
This behaviour indicates a kind of continuous transition from one type of structure (twins 
or microtwins) to the other (‘quasi-crystals’). The critical exponent for the parameter A 
for this transition is equal to 0.55 +- 0.02. 

It has been shown by Henley (1988) and Tang and JariC (1989) that for the equilibrium 
random tilings the deviation from the critical concentration is related to the uniform 
phason strain and that this dependence does not include the linear term. In such a case 
the uniform phason strain value should go as (c - cp)0,5 provided that the quadratic term 
dominates the dependence. The value of the critical exponent obtained for our structures 
strongly supports the conjecture that the A parameter is proportional to the phason 
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strain. The deviation from 0.5 can be explained by the influence of higher-order terms 
in the relation between the concentration deviation and the phason strain or by the non- 
equilibrium nature of our structures. 

For real structures the way to classify the structure as one of the two types (‘quasi- 
crystals’; twins or  microtwins) is to make a plot like either figure 4 or figure 5 .  If the peak 
intensities scale as N 2 ,  the structure is a ‘quasi-crystal’; if they do not scale as N 2 ,  the 
structure is a twin or a microtwin. Because the ‘quasi-crystals’ are limited only to a 
certain concentration (at least in two dimensions), we rather expect that most real 
structures would be twins or microtwins. However, experimental verification could be 
difficult, especially for concentrations close to the critical point. 
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